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Purpose of review

Myopia is a global problem, being particularly prevalent in the urban areas of east and southeast Asia. In
addition to the direct economic and social burdens, associated ocular complications may lead to
substantial vision loss. With prevalence of myopia above 80% and high myopia over 20%, it is crucial to
control myopia. The aim of this review to is provide an update on the interventions to slow the onset of
myopia and retard its progression.

Recent findings

The epidemic of myopia is characterized by increasingly early onset, combined with high myopia
progression rates. There are two pathways for myopia control: firstly to slow the onset of myopia and
secondly to reduce or prevent progression. Increased time outdoors can reduce the onset of myopia.
Atropine 0.01% dose offers an appropriate risk-benefit ratio, with no clinically significant visual side effects
balanced against a significant 50% reduction in myopia progression. Orthokeratology contact lenses can
slow axial length elongation, but infective keratitis is a risk. Peripheral defocussing lenses may both have a
role in slowing myopic progression in a subset of children and further help our understanding of the
physiologic control of ocular growth.

Summary

Myopia control can be achieved by slowing the onset of myopia, which now appears to be possible
through increasing time outdoors and slowing the progression of myopia with interventions like atropine
and orthokeratology.
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INTRODUCTION

Myopia is the most common human eye disorder in
the world, affecting 85–90% of young adults in
some Asian countries like Singapore and Taiwan,
and 25–50% of older adults in the United States and
Europe. Unlike Western populations, where the
prevalence of myopia is low (<5%) in children, in
Taiwan and Singapore, the prevalence is 20–30%
among 6–7-year-olds and as high as 84% in high
school students [1

&

]. In 12-year-old children, the
prevalence is 62.0% in Singapore and 49.7% in
Guangzhou, China, compared with 20.0% in the
United States, 11.9% in Australia, 9.7% in urban
India, and 16.5% in Nepal [2–9]. With its increasing
prevalence and earlier age of onset in recent birth
cohorts, myopia now affects 33% of adults in the
United States. Between 1999 and 2004, the preva-
lence of myopia was two-thirds higher than between
1971 and 1972 [10]. Its prevalence is increasing
alarmingly in East Asia’s developing economies
and will affect 2.5 billion by 2020. The myopia
progression rate in East Asian children is high
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[nearly �1 diopter (D) per year], and approximately
24% of the myopic population become high myopes
as adults [1

&

].
PROBLEMS

Apart from the obvious socio-economic burden
estimated at annual US$268 billion worldwide,
myopia is a global public health concern [11]. Severe
or high-grade myopia is a leading cause of blindness
because of its associated comorbidities of retinal
detachment, macular choroidal degeneration,
premature cataract, and glaucoma [12–17]. The
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KEY POINTS

� The epidemic of myopia is characterized by
increasingly early onset, combined with high myopia
progression rates.

� There are two pathways for myopia control: firstly to
slow the onset of myopia and secondly to reduce or
prevent progression.

� Increased time outdoors can reduce the onset
of myopia.

� Atropine 0.01% dose offers an appropriate risk-benefit
ratio, with no clinically significant visual side effects
balanced against a significant 50% reduction in
myopia progression.

� Orthokeratology contact lenses can slow axial length
elongation, but infective keratitis is a risk.

Translational research

Cop
yearly incidence of retinal detachments had been
estimated as 0.015% in patients with less than 4.74
D myopia, and increases to 0.07% in patients with
myopia greater than or equal to 5 D and 3.2% in
patients with myopia greater than or equal to 6 D
[12,13]. Myopes also have increased risks of devel-
oping macular choroidal neovascularization, rang-
ing from two times for patients with 1–2 D of
myopia, four times with 3–4 D of myopia, and nine
times for�5 to 6 D [14–16]. The Blue Mountains Eye
Study showed that glaucoma was present in 4.2% of
eyes with low myopia and 4.4% of eyes with mod-
erate to high myopia [17]. Pathologic myopia is
estimated to have a global prevalence of 0.9–3.1%
and to be the cause of low vision in 5.8–7.8% in
Europeans and 12.2–31.3% in East Asians [18].
Given the increasing prevalence of myopia in East
Asia, where the prevalence of myopia in young
adults now approaches 80% and high myopia rates
exceed 20%, the disease burden and cost of patho-
logic myopia will continue to increase over time
[19]. There are significant odds ratios (ORs) for
myopic maculopathy, retinal detachment, cata-
racts, and glaucoma, even for low and moderate
levels of myopia, and these ORs increase further
with higher levels of myopia [20]. The epidemic
of myopia is characterized by increasingly early
onset, combined with high myopia progression
rates. Early onset of myopia leaves more time for
progression at higher rates and inevitably to higher
myopia. It is therefore crucial to control myopia in
children to prevent them from developing high
myopia and associated visual impairment [21

&

].
The aim of this review to is provide an update on
the interventions to slow the onset of myopia and
retard myopia progression.
2 www.co-ophthalmology.com
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GENETICS
Myopia is etiologically heterogeneous, with a low
level of myopia of clearly genetic origins that
appears without exposure to risk factors [22

&

].
Ample evidence supports heritability of the non-
syndromic forms of myopia, especially for high-
grade myopia commonly referred to as myopic
spherical refractive power of 5–6 D or higher
[23]. Recent large genome-wide association studies
(GWAS) have identified more than 20 associated
loci for myopia [24]. However, the rise in pre-
valence of high myopia currently has an unusual
pattern of development, with increases in pre-
valence first appearing at approximately age 11.
This pattern suggests that the increasing pre-
valence of high myopia is because of progression
of myopia in children who became myopic at
approximately age 6 or 7, and age-specific pro-
gression rates typical of East Asia will take these
children to the threshold for high myopia in 5–6
years. This high myopia seems to be acquired,
whereas high myopia in previous generations
tended to be genetic in origin [22

&

].
OUTDOOR TIME

Recent epidemiological data have identified out-
door time as a key environmental determinant of
myopia. In both Singaporean and Australian chil-
dren, total time spent outdoors was associated with
less myopia, independent of indoor activity, read-
ing, and engagement in sports [25,26]. A compara-
tive study of Chinese children in Singapore and
Sydney also revealed a protective effect of outdoor
activity [27,28]. The pooled OR for myopia indicated
a 2% reduced odds of myopia per additional hour of
time spent outdoors per week, after adjustment for
covariates [29]. The Orinda study showed that
higher levels of time outdoors/sports reduced the
additional risk of myopia associated with having
myopic parents, whereas Sydney Myopia Study
showed that higher levels of time outdoors reduced
the effects of increased amounts of near work
[30,31]. Both studies provided evidence of threshold
and saturation effects, and suggested that 2–3 h a
day outdoors, outside of school hours, would pro-
vide considerable protection. Importantly, three
clinical trials in East Asia concluded that increasing
the amount of time that children spend outdoors is
able to reduce the onset of myopia [32

&

,33
&

,34]. The
mechanism of the protective effect is still uncertain.
It has been proposed that bright light exposures
outdoors during daylight hours (which easily
reaches 10 000–100 000 lux or more) compared with
typical low light intensities indoors (generally less
than 1000 lux) might be the important factor, based
Volume 28 � Number 00 � Month 2017
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on two phenomena well documented in animal
studies, namely, light stimulation of dopamine
release from the retina and inhibition of axial
elongation by dopamine agonists [35,36]. Ultra-
violet exposure is also not important in protection
against myopia onset. This means that increased
time outdoors can be combined with skin and eye
protection measures [22

&

]. Although time outdoors
slows the onset of myopia, it paradoxically does not
seem to affect the progression of myopia, that is, the
myopic shift in refraction seen in established
myopes [30,37]. Both onset and progression depend
on axial elongation, and it is not clear how axial
elongation could be differentially regulated before
and after onset.
NEAR WORK

Near work was found to be associated with
myopia among American children in the Orinda
Longitudinal Study of Myopia and Australian
children the Sydney Myopia Study, but was not
significantly associated with incident myopia
in Singaporean children [38

&

,39,40]. Even the
results from more recent studies have been
equivocal, with some studies showing positive
findings, whereas others reported no relationship
[3,41–48]. A recent meta-analysis found that more
time spent on near work activities was associated
with higher odds of myopia [OR 1.14, 95% confi-
dence interval (CI) 1.08–1.20] and that the odds
of myopia increased by 2% (OR 1.02, 95% CI
1.01–1.03) for every 1-diopter-h more of near
work per week [49

&

]. Increasing evidence suggests
that the intensity of near work, that is, sustained
reading at closer distance (less than 30 cm) with
fewer breaks, may be more important than the
total hours of near work [44–47]. It is important
to note that the precise quantification of near
work is difficult.
Interventions to retard the progression of
myopia

Many interventions aimed at slowing myopia pro-
gression have been proposed. In the latest network
meta-analysis by Huang et al. [50

&&

] that involved 30
RCTs to determine the effectiveness of different
interventions in slowing down the progression of
myopia in children, the authors found that the most
effective intervention that showed a marked
reduction in myopia progression was atropine, fol-
lowed by pirenzepine, orthokeratology. Peripheral
defocus–modifying contact lenses showed moder-
ate effects and progressive addition spectacle lenses
showed minimal effects [50

&&

].
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Atropine eye drops
Atropine is a nonselective muscarinic antagonist. It
was first used for myopia treatment by Wells in
nineteenth century. Subsequent studies by various
authors showed some clinical effect in slowing myo-
pia progression in children [51–62]. Atropine inhib-
its myopia in tree shrew and monkey myopia
models, and blocks from deprivation myopia or
lens-induced myopia in chicks [63–65]. In contrast
to the mammalian eye, the avian eye contains stri-
ated intraocular muscle and hence this indicates a
nonaccommodative mechanism for antimyopia
activity of atropine and via nicotinic pathway
instead [65–69]. There are currently two theories
to explain this: atropine functions at a relatively low
dose via a neurochemical cascade, which begins at
M1/4 receptors in the retina (possibly in amacrine
cells); atropine has a direct effect on scleral fibro-
blasts by inhibiting glycosaminoglycans synthesis
via a nonmuscarinic mechanism [70

&

]. The Atropine
for the Treatment of Myopia studies (ATOM1 and 2)
were randomized, double-masked, placebo-con-
trolled trials involving 400 Singapore children
[71]. ATOM1 showed that 1% atropine eye drops
instilled nightly in one eye over a 2-year period
reduces myopic progression significantly by 77%
(0.28 D in the control group versus 1.2 D in the
atropine group) and reduced the axial length
elongation (mean axial length increase of
0.39 mm in controls versus no growth in atropine
group). The topical atropine was well tolerated.
Multifocal electroretinogram testing at 2 or
3 months after cessation of treatment revealed no
significant effect on retinal function [72]. Side
effects of atropine 1% include photophobia due to
mydriasis and decreased near vision due to cyclo-
plegia. As a result, if atropine 1% is used in both eyes,
the patient needs photochromatic, progressive
additional lenses. The ATOM1 study reported no
systemic side effects, although possibilities include
dry eye, dry mouth, dry throat, flushed skin, con-
stipation, and difficulty with micturition. Like the
Amblyopia Treatment Studies (ATS), the ATOM1
study found that the paralysis of accommodation
and the associated near vision blur secondary to
atropine treatment was temporary and was revers-
ible upon cessation of treatment [73,74]. ATOM1
established the clinical safety and efficacy of atro-
pine 1%. ATOM2 studies were subsequently per-
formed to evaluate lower concentrations of
atropine. Phase 1 of ATOM2 established that atro-
pine 0.01% was almost as effective in reducing
myopia progression as higher concentrations. There
seemed to be a dose-related response to atropine,
with higher doses inhibiting myopia progression to
a slightly greater degree than lower doses, although
rved. www.co-ophthalmology.com 3
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the myopia progression of �0.49, �0.38, and �0.30
D in the atropine 0.01, 0.1, and 0.5% groups,
respectively, were not significantly different at 24
months [75]. However, when atropine was stopped
for 12 months after 24 months of treatment (phase 2
of ATOM2), there was a rapid increase in myopia in
children originally treated with higher concen-
trations of atropine, whereas those receiving the
lowest concentration of 0.01% showed minimal
change [76]. This resulted in myopia progression
being significantly lower in children previously
assigned to the 0.01% group (�0.72 D) at 36 months
compared with that in the 0.1% (�1.04 D) and 0.5%
(�1.15 D) groups. In addition, the lowest dose also
caused less photopic pupil dilation (0.74 mm, com-
pared with 2.25 and 3.11 mm in the 0.1 and 0.5%
groups, respectively) and no clinically significant
loss in accommodation or near visual acuity (4.6
D, compared with 10.1 and 11.8 D in the 0.1 and
0.5% groups, respectively).Overall, there was a dose-
related response in phase 1, with a greater effect in
higher doses, but an inverse dose-related increase in
myopia during phase 2 (washout), resulting in atro-
pine 0.01% being most effective in reducing myopia
progression at 3 years. In the final phase (phase 3),
spanning the fourth and fifth years of the ATOM2
study, children who continued to progress (>0.5 D/
year) during phase 2 (the washout year) were re-
treated with atropine 0.01% [77

&

]. Some 24, 59, and
68% of children originally in the atropine 0.01, 0.1,
and 0.5% groups, respectively, who progressed in
phase 2, were restarted on atropine 0.01%. Younger
children and those with greater myopic progression
in year 1 were more likely to require re-treatment.
The lower myopia progression in the 0.01% group
persisted during phase 3, with overall myopia pro-
gression and change in axial elongation at the end of
5 years being lowest in this group (�1.38D;
0.75 mm) compared with the 0.1% (�1..83 D,
P¼0.003; 0.85 mm, P¼0.144) and 0.5% (�1.98 D,
P<0.001; 0.87 mm, P¼0.075) groups. Atropine
0.01% also caused minimal pupil dilation
(0.8 mm), minimal loss of accommodation (2–3
D), and no near visual loss compared with higher
doses. Children on atropine 0.01% did not need
progressive additional lenses. Over 5 years, atropine
0.01% eye drops were more effective in slowing
myopia progression by 50% with less visual side
effects compared with higher doses of atropine.
The efficacy of lower dose atropine is corroborated
by Taiwanese cohort studies concluding that doses
of 0.025–0.05% could be effective [78]. In a recent
retrospective case-controlled study conducted in the
United States, the authors similarly found that atro-
pine 0.01% significantly reduced the rate of myopic
progression with minimal adverse effects in a mostly
4 www.co-ophthalmology.com
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white population [79]. However, there may be chil-
dren who are poor responders to atropine. In
ATOM1, 12.1% of children (younger, with higher
myopia, and greater tendency of myopic pro-
gression) had myopia progression of by more than
0.5 D after 1 year of treatment with atropine 1%
[80

&

]. In phase1 of ATOM2, 9.3% of children in the
0.01% group, 6.4% of children in the 0.1% group,
and 4.3% of children in the 0.5% group had myopia
progression more than 1.5 D over 24 months. Fur-
ther studies with a longer period of follow-up should
be considered to evaluate the use of low-dose atro-
pine in myopia control.
Pirenzepine

Topical pirenzepine 2% ophthalmic gel is a selective
antimuscarinic (M1) agent that was used in two
randomized controlled trials, which showed
approximately 40% reduction in myopia pro-
gression with a corresponding reduction in axial
length after 12 months of follow-up in patients
who used pirenzepine gel twice a day [81,82].
Although it was thought that a more selective anti-
muscarinic agent would result in less cycloplegia,
the authors noted that children receiving pirenze-
pine still encountered difficulties with accommo-
dation and mild mydriasis. Further trials and
registration of this drug were not pursued, and
pirenzepine gel is no longer available.
Bifocals

Reports in animal studies suggest that increased
retinal defocus is a factor in the pathogenesis of
myopia [83–86]. In humans, high accommodative
lag has been associated with myopia [86]. It was
postulated that bifocals or multifocals could provide
clear vision over a range of viewing distances, reduce
retinal defocus, and slow the progression of myopia.
However, randomized clinical trials in the United
States, Finland, and Denmark showed no significant
slowing of myopia [87–90]. The only promising
results were reported by Cheng et al. [90–92] in a
group of Chinese Canadian children, which found a
39% slowing of myopia progression for bifocal-only
spectacles and 50% effect for bifocal spectacles with
base-in prism, although there was not a significant
difference in progression between the bifocal-only
and bifocal and prism groups [93

&

]

Progressive additional lenses

The use of progressive addition lenses (PALs) has
produced relatively small treatment effects [94–96].
In particular, the correction of myopia evaluation
Volume 28 � Number 00 � Month 2017
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trial (COMET, a multicenter, randomized, double-
masked clinical trial) concluded that the overall
adjusted 3-year treatment effect of 0.20�0.08 D
was statistically significant (P¼0.004), but not
clinically meaningful [94]. All the treatment effects
occurred in the first year. Additional analyses
showed that there were more significant treatment
effects in children with larger lags of accommo-
dation in combination with near esophoria
(0.64�0.21 D), shorter reading distances
(0.44�0.20 D), or lower baseline myopia
(0.48�0.15 D) [94,97]. Though statistically signifi-
cant, these differences over a 3-year period are not
clinically meaningful. The 3-year treatment effects
decreased even further after 5 years [98].
Contact lenses

Randomized clinic trials showed that soft contact
lenses and rigid gas permeable (RGP) lenses were not
effective in retarding myopia progression [99–102].
In the Contact Lens and Myopia Progression
(CLAMP) study, there was a statistically significant
difference in myopia progression in the RGP lens
versus soft lens group (�1.56�0.95 D for RGP lens
wearers versus�2.19�0.89 D for the soft lens group;
P<0.001), with most of the treatment effects found
in the first year. Corneal curvature steepened sig-
nificantly less in the RGP lens group (0.62�0.60 D)
compared to the soft lens group (0.88�0.57 D;
P¼0.01) [103].Three-year axial elongation was not
significantly different between treatment groups.
These results suggest that the slowed myopia pro-
gression was mainly due to corneal flattening and
not true slowing of myopia, which may be reversible
with discontinuation of RGP lens wear.
Orthokeratology

In overnight orthokeratology – also known as OOK,
OK, ortho-k, and corneal reshaping – the patient
wears reverse geometry lenses overnight to tempor-
arily flatten the cornea and provide clear vision
during the day without any glasses or contact lenses
[104]. Reduction in the myopia (up to �6 D) is
achieved by central corneal epithelial thinning,
midperipheral epithelial, and stromal thickening.
More than one hundred cases of severe microbial
keratitis related to orthokeratology have been
reported since 2001[105]. Orthokeratology lenses
slow axial length growth compared to single vision
gas permeable contact lenses, single vision soft con-
tact lenses, and single vision spectacles [106–115].
The first randomized clinical trial of orthokeratol-
ogy myopia control demonstrated significantly
slower mean axial elongation in children wearing
1040-8738 Copyright � 2017 Wolters Kluwer Health, Inc. All rights rese
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orthokeratology lenses (0.36�0.24 mm) than
children wearing single vision spectacles
(0.63�0.26 mm; P¼0.01) [110]. These results were
similar to other randomized clinical trials [108]
Orthokeratology contact lenses correct central
refractive error while leaving peripheral myopic
blur, which may act as a putative cue to slow the
progression of myopia [115]. A recent meta-analysis
showed that of the seven eligible studies, myopic
progression was reduced by approximately 45%
after 2 years [116

&

]. The latest study involving 14
participants concluded that a trend toward a
reduction in the rate of axial elongation of the order
of 33% was found in the orthokeratology group
following 7 years of lens wear [117

&

]. In summary,
ortho-k results in an approximately 40% reduction
in the progression of myopia. It has the advantage of
eliminating the need for daytime of contact lenses
wear. Its disadvantages include cost, risk of infec-
tion, discomfort, problems with insertion and
removal, and reduced visual acuity as compared
to glasses or daily wear contact lenses as the day
progresses. There is no good, controlled, long-term
study demonstrating sustained myopia control
effect and there is no washout data.
Peripheral retinal defocus

There is accumulating evidence for the role of the
peripheral retina and peripheral vision in the devel-
opment and progression of refractive errors. Primate
studies indicate that form deprivation at the per-
ipheral retina produced axial myopia despite of clear
vision at the fovea, and foveal ablation did not
disrupt the emmetropization process [113].
Although initial human studies involving mainly
Caucasians found an association with relative per-
ipheral hyperopia, defined as a more hyperopic
peripheral refraction compared to the central refrac-
tion and central myopia, the Peripheral Refraction
in Preschool Children (PREP) Study of Singaporean
Chinese children and Collaborative Longitudinal
Evaluation of Ethnicity and Refractive Error
(CLEERE) study showed that relative peripheral
hyperopia had little consistent influence on the risk
of myopia onset, myopia progression, or axial
elongation [118–123]. It is thought that relative
peripheral hyperopia did not precede the onset of
myopia, but rather occurred in parallel with axial
elongation as the ocular shape changed from oblate
to relatively more prolate. Among human clinical
trials with treatment strategies aimed at reducing
the peripheral retinal hyperopic defocus, there was
no statistically significant differences in the rates of
myopia progression between children who wore one
of three novel spectacle lenses that decreased
rved. www.co-ophthalmology.com 5
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relative peripheral hyperopia and those who wore
the conventional single-vision spectacle lenses.
However, for children aged 6–12 years, whose
parents are myopic, one of the three spectacle lenses
was found to reduce the progression of myopia
significantly when higher rates of progression were
evident [124]. Similarly, the rate of progression of
myopia was reduced by approximately 30% in eyes
wearing contact lenses designed to reduce hyperopic
defocus compared with single-vision spectacles
[125]. Interestingly, the underlying mechanism of
orthokeratology for retardation of myopia pro-
gression involves reduction in peripheral hyperopic
defocus [113].
Undercorrection

The objectives of undercorrection were to achieve
myopic defocus, which demonstrated a reduction in
progression of myopia in animal models, and to
reduce the stress on accommodation in near-point
environments. However, data from prospective
clinical trials suggest that undercorrection of myo-
pia in humans either increases or has no effect on
myopia progression [126,127]. Undercorrection
should not be advocated.
Part-time lens wear

Preliminary data of 43 patients suggest that there is
no effect of the pattern of lens wear on the pro-
gression of myopia. Three-year refractive shifts were
not significantly different among the four groups:
fulltime wearers; myopes who switched from dis-
tance to full-time wear; distance wearers; and non-
wearers [128]. A randomized clinical trial using a
large sample of children randomly assigned to a lens
wear regimen is warranted.
CONCLUSION

The current studies demonstrate the importance of
environmental influences (particularly increased
outdoor time), which may be important precipitant
of myopia onset, and the advice to parents is to
increase their children’s outdoor time. Atropine
0.01% dose appears to have a good risk-benefit ratio,
with no clinically significant visual side effects bal-
anced against a reasonable and clinically significant
50% reduction in myopia progression. Further stud-
ies could explore if there is still a role for high-dose
atropine (e.g. for rapid progressors) and the additive
effect of combining atropine with other emerging
myopia therapies (e.g. orthokeratology, peripheral
defocus lenses) and environmental interventions
(e.g. increased outdoor time). Orthokeratology
6 www.co-ophthalmology.com
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contact lenses also appear to slow axial length
elongation by approximately 40%, but care needs
to be taken to ensure there is minimal risk of
corneal-related problems. In both interventions,
longer-term studies may help demonstrate how
and when the intervention can be stopped, and
ensure there are no long-term adverse effects.
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